7DIES

El mejor almacen de libros en formatos PDF, EPUB y MOBI

Curvas algebraicas

Sinopsis del Libro

Libro Curvas algebraicas

Este libro pretende ser una iniciación muy elemental al estudio de las Curvas Algebraicas, y tiene como destinatarios prioritarios los estudiantes de la asignatura de Curvas Algebraicas del grado en Matemáticas, así como el doble Grado en Matemáticas y Física. La elección del material responde a la tradición de muchos de los textos que cubren la materia y a un intento por preparar (por primera vez) esta asignatura por parte del autor con el fin de facilitar su presentación a sus estudiantes. Como asunción general, y con el objetivo de facilitar tal presentación, trabajaremos fundamentalmente con coeficientes en cuerpos algebraicamente cerrados de característica cero. Aunque esto limita el uso de los resultados del texto, entendemos que facilita sustancialmente la comprensión de los resultados presentados por parte del lector que se enfrente por primera vez a esta materia. Las dos principales fuentes en las que el autor se ha basado para preparar este curso han sido: el curso de Curvas Algebraicas impartido por su gran amigo J.M. Gamboa en el año 1997 (al que tuvo el placer de asistir) y el curso de Curvas Algebraicas que ha impartido su compañero Enrique Arrondo durante los últimos 10 años [A2]. El libro tiene un doble objetivo. En primer lugar familiarizar al lector con los rudimentos para estudiar los conjuntos algebraicos afines y proyectivos, con especial atención a los del plano. Por ello, incluimos demostraciones elementales de resultados como el Teorema de la base de Hilbert, el Nullstellensatz de Hilbert, el lema de Study o el lema de colocación de Noether. El segundo objetivo consiste en recoger aquellos resultados que consideramos básicos para el estudio de las curvas algebraicas (afines y proyectivas). Todos están relacionados de forma directa o indirecta con el Teorema de Bézout, que es el resultado principal de este libro. Como el lector seguramente sabe, el Teorema de Bézout afirma que dos curvas algebraicas proyectivas de grados d y e se cortan en d · e puntos contados con su multiplicidad. En este libro las curvas algebraicas se corresponden con las ecuaciones polinómicas (salvo proporcionalidad por elementos no nulos del cuerpo base) y no con los lugares de ceros correspondientes del espacio afín o del espacio proyectivo (según el caso). Por supuesto, curvas diferentes pueden tener el mismo lugar de ceros y a cada lugar de ceros de una curva algebraica le vamos a asignar de “forma únivoca” una ecuación polinómica minimal (que como el lector puede esperar es una ecuación polinómica del lugar de ceros libre de componentes múltiples). Para demostrar el Teorema de Bézout (que es un resultado de naturaleza global) debemos empezar por estudiar las curvas (afines y proyectivas) desde el punto de vista local y analizar cómo son sus puntos. Si la curva con la que estamos trabajando no tiene componentes múltiples (es decir, es una ecuación minimal de su lugar de ceros), entonces la curva solo tiene una cantidad finita de puntos especiales (a los que llamaremos puntos singulares) y el resto de los puntos, que llamaremos puntos regulares, tendrán desde un punto de vista local todos ellos un comportamiento similar. En los puntos regulares es relativamente sencillo definir el concepto de recta tangente y estudiaremos con especial atención los puntos de inflexión, que son aquellos puntos en los que la recta tangente corta a la curva con mayor multiplicidad que en los puntos regulares genéricos. Para poder abordar su estudio de forma más sistemática analizaremos el comportamiento del Hessiano de la curva. En los puntos singulares puede haber una única tangente o varias y al producto de sus ecuaciones (con las multiplicidades adecuadas) lo llamaremos cono tangente. El conocimiento de la recta tangente o en su defecto del cono tangente, no es suficiente para entender cómo se cortan dos curvas en un punto. Para poder entender el comportamiento de las curvas en su intersección es...

Ficha Técnica del Libro

Número de páginas 218

Autor:

  • José F. Fernando

Categoría:

Formatos Disponibles:

PDF, EPUB, MOBI

¿Cómo descargar el libro?

A continuación, te enseñamos varias alternativas para conseguir el libro.

Valoración

Popular

4.4

28 Valoraciones Totales


Más libros de la categoría Matemáticas

Problemas, cuestiones y aplicaciones de matemática discreta

Libro Problemas, cuestiones y aplicaciones de matemática discreta

La matemática discreta es la disciplina dedicada al estudio de estructuras cuyos elementos pueden contarse uno por uno separadamente. A diferencia del Cálculo infinitesimal, estudia procesos con conjuntos numerables, ya sean fi nitos o infinitos. Forma parte de los planes de estudios de ingenierías, informática, ciencia de la computación, así como, obviamente, de matemáticas, por lo que esta obra va dirigida a todos los lectores interesados en estas materias. Se trata de un libro de problemas resueltos, en el que cada capítulo comienza con un breve resumen teórico, cuyo único...

Matemáticas 3

Libro Matemáticas 3

Matemáticas 3, segunda edición, aborda conocimientos básicos sobre geometría analítica y su aplicación a la vida cotidiana. Algunos de los temas generales que se incluyen son los siguientes: lugares geométricos, segmentos rectilíneos y polígonos, la recta como lugar geométrico, circunferencia, parábola, elipse. • El autor es ampliamente reconocido por sus aportaciones a la enseñanza de la Geometría analítica desde hace más de 15 años. • Además de incluir situaciones didácticas paso a paso, al inicio de cada bloque se agregan más problemas y casos particulares para que...

Matemáticas para el florecimiento humano

Libro Matemáticas para el florecimiento humano

Ganador del Premio Euler 2021 de la Mathematical Association of America, este libro es una profunda meditación sobre lo que significa ser persona. Un reconocido matemático y educador revela cómo las matemáticas satisfacen una amplia gama de deseos humanos básicos y cultivan virtudes esenciales para el florecimiento humano. A los desencantados por sus experiencias matemáticas pasadas, Francis Su les ofrece una visión inclusiva y acogedora de lo que son las matemáticas, para quién son y por qué cualquiera debería aprenderlas. Las reflexiones de su amigo el recluso Christopher...

ESTUDIO ESTADÍTICO- NEUTROSÓFICO DE LOS EFECTOS CAUSADOS POR SISMOS. CASO DE ESTUDIO

Libro ESTUDIO ESTADÍTICO- NEUTROSÓFICO DE LOS EFECTOS CAUSADOS POR SISMOS. CASO DE ESTUDIO

En este trabajo, se presenta la vulnerabilidad del ambiente frente a los efectos contaminantes que se producen después de un movimiento telúrico o sismo con la finalidad de poder determinar el nivel de conocimiento que tienen los docentes y personal no docente de la Universidad de Guayaquil, respecto a los terremotos y su peligrosidad, así mismo como actuarían durante y después de este y que tan conscientes se encuentran de los efectos altamente contaminantes que se presentan posteriormente ocurrido el desastre.

Libros Recomendados 2025



Últimas Búsquedas


Categorías Destacadas