7DIES

El mejor almacen de libros en formatos PDF, EPUB y MOBI

Curvas algebraicas

Sinopsis del Libro

Libro Curvas algebraicas

Este libro pretende ser una iniciación muy elemental al estudio de las Curvas Algebraicas, y tiene como destinatarios prioritarios los estudiantes de la asignatura de Curvas Algebraicas del grado en Matemáticas, así como el doble Grado en Matemáticas y Física. La elección del material responde a la tradición de muchos de los textos que cubren la materia y a un intento por preparar (por primera vez) esta asignatura por parte del autor con el fin de facilitar su presentación a sus estudiantes. Como asunción general, y con el objetivo de facilitar tal presentación, trabajaremos fundamentalmente con coeficientes en cuerpos algebraicamente cerrados de característica cero. Aunque esto limita el uso de los resultados del texto, entendemos que facilita sustancialmente la comprensión de los resultados presentados por parte del lector que se enfrente por primera vez a esta materia. Las dos principales fuentes en las que el autor se ha basado para preparar este curso han sido: el curso de Curvas Algebraicas impartido por su gran amigo J.M. Gamboa en el año 1997 (al que tuvo el placer de asistir) y el curso de Curvas Algebraicas que ha impartido su compañero Enrique Arrondo durante los últimos 10 años [A2]. El libro tiene un doble objetivo. En primer lugar familiarizar al lector con los rudimentos para estudiar los conjuntos algebraicos afines y proyectivos, con especial atención a los del plano. Por ello, incluimos demostraciones elementales de resultados como el Teorema de la base de Hilbert, el Nullstellensatz de Hilbert, el lema de Study o el lema de colocación de Noether. El segundo objetivo consiste en recoger aquellos resultados que consideramos básicos para el estudio de las curvas algebraicas (afines y proyectivas). Todos están relacionados de forma directa o indirecta con el Teorema de Bézout, que es el resultado principal de este libro. Como el lector seguramente sabe, el Teorema de Bézout afirma que dos curvas algebraicas proyectivas de grados d y e se cortan en d · e puntos contados con su multiplicidad. En este libro las curvas algebraicas se corresponden con las ecuaciones polinómicas (salvo proporcionalidad por elementos no nulos del cuerpo base) y no con los lugares de ceros correspondientes del espacio afín o del espacio proyectivo (según el caso). Por supuesto, curvas diferentes pueden tener el mismo lugar de ceros y a cada lugar de ceros de una curva algebraica le vamos a asignar de “forma únivoca” una ecuación polinómica minimal (que como el lector puede esperar es una ecuación polinómica del lugar de ceros libre de componentes múltiples). Para demostrar el Teorema de Bézout (que es un resultado de naturaleza global) debemos empezar por estudiar las curvas (afines y proyectivas) desde el punto de vista local y analizar cómo son sus puntos. Si la curva con la que estamos trabajando no tiene componentes múltiples (es decir, es una ecuación minimal de su lugar de ceros), entonces la curva solo tiene una cantidad finita de puntos especiales (a los que llamaremos puntos singulares) y el resto de los puntos, que llamaremos puntos regulares, tendrán desde un punto de vista local todos ellos un comportamiento similar. En los puntos regulares es relativamente sencillo definir el concepto de recta tangente y estudiaremos con especial atención los puntos de inflexión, que son aquellos puntos en los que la recta tangente corta a la curva con mayor multiplicidad que en los puntos regulares genéricos. Para poder abordar su estudio de forma más sistemática analizaremos el comportamiento del Hessiano de la curva. En los puntos singulares puede haber una única tangente o varias y al producto de sus ecuaciones (con las multiplicidades adecuadas) lo llamaremos cono tangente. El conocimiento de la recta tangente o en su defecto del cono tangente, no es suficiente para entender cómo se cortan dos curvas en un punto. Para poder entender el comportamiento de las curvas en su intersección es...

Ficha Técnica del Libro

Número de páginas 218

Autor:

  • José F. Fernando

Categoría:

Formatos Disponibles:

PDF, EPUB, MOBI

¿Cómo descargar el libro?

A continuación, te enseñamos varias alternativas para conseguir el libro.

Valoración

Popular

4.4

28 Valoraciones Totales


Más libros de la categoría Matemáticas

Introducción a la estadística con aplicaciones en ciencias sociales

Libro Introducción a la estadística con aplicaciones en ciencias sociales

Esta obra fue desarrollada a partir de las notas de clase de la asignatura “Fundamentos de Estadística” en los programas de Psicología, Relaciones Internacionales y Comunicación Social de la Universidad del Norte, y puede ser de utilidad en otras áreas de las Ciencias Sociales. Está dividida en tres capítulos: “Estadística descriptiva”, “Distribuciones de probabilidad” y “Estadística inferencial”, cada uno de los cuales contiene ejercicios y talleres que enfatizan en el análisis de datos y la interpretación de resultados a través del Statgraphics Centurion XVI.

Introducción a la teoría de conjuntos

Libro Introducción a la teoría de conjuntos

¿es un texto aún vigente? Los temas tratados corresponden a los que podrían llamarse tópicos básicos eternos, de conocimiento imprescindible para el futuro matemático o para el licenciado en Matemáticas. Si bien es cierto que en el texto no se incluye ningún resultado reciente en teoría de conjuntos, debido a que su comprensión requiere un nivel de conocimientos y madurez mayor a la que poseen los estudiantes de cuarto semestre universitario, se recomienda a los docentes habilidosos subsanar esta carencia, haciendo la introducción, al menos a un tema contemporáneo, como las...

Lógica

Libro Lógica

La segunda edición de Lógica DGB cobra expresión en las reformas de actualización emprendidas por la Dirección General de Bachillerato (DGB), misma que pretende dar cumplimiento a la finalidad del Bachillerato que es "generar en el estudiantado el desarrollo de una primera síntesis personal y social que le permita su acceso a la educación superior, a la vez que le dé una comprensión de su sociedad, su tiempo y le prepare para su posible incorporación al trabajo productivo".

Problemas, cuestiones y aplicaciones de matemática discreta

Libro Problemas, cuestiones y aplicaciones de matemática discreta

La matemática discreta es la disciplina dedicada al estudio de estructuras cuyos elementos pueden contarse uno por uno separadamente. A diferencia del Cálculo infinitesimal, estudia procesos con conjuntos numerables, ya sean fi nitos o infinitos. Forma parte de los planes de estudios de ingenierías, informática, ciencia de la computación, así como, obviamente, de matemáticas, por lo que esta obra va dirigida a todos los lectores interesados en estas materias. Se trata de un libro de problemas resueltos, en el que cada capítulo comienza con un breve resumen teórico, cuyo único...

Libros Recomendados 2025



Últimas Búsquedas


Categorías Destacadas